Domain algebra-forum.de kaufen?

Produkt zum Begriff Multiplizieren:


  • Lineare Algebra
    Lineare Algebra

    Lineare Algebra

    Preis: 4.99 € | Versand*: 3.99 €
  • Analytische Geometrie und Lineare Algebra
    Analytische Geometrie und Lineare Algebra

    Analytische Geometrie und Lineare Algebra

    Preis: 5.99 € | Versand*: 3.99 €
  • Lineare Algebra (Fischer, Gerd~Springborn, Boris)
    Lineare Algebra (Fischer, Gerd~Springborn, Boris)

    Lineare Algebra , Dieses über mehrere Jahrzehnte bewährte und kontinuierlich überarbeitete Lehrbuch eignet sich bestens als Grundlage für eine zweisemestrige einführende Vorlesung für Studierende der Mathematik, Physik und Informatik, aber auch für andere Fächer, die mathematische Grundlagen aus der Linearen Algebra benötigen. Einige weiterführende Themen können für einen schnellen Einstieg problemlos übersprungen werden. Über den ganzen Text hinweg werden die abstrakten Begriffe durch Beispiele motiviert und die lebendigen Wechselbeziehungen zwischen allgemeiner Theorie und konkreten Rechnungen mit Hilfe von Matrizen hervorgehoben. Der Text enthält zahlreiche Übungsaufgaben. Viele Lösungen dazu findet man in dem von H. Stoppel und B. Griese verfassten Übungsbuch zur Linearen Algebra . Weitere Themen und Anwendungen werden im Lernbuch Lineare Algebra und Analytische Geometrie von Gerd Fischer behandelt, das sich bestens als Ergänzung für das Selbststudium eignet. Für die 19. Auflage wurde das Buch vollständig überarbeitet und ergänzt. Das Verhältnis zwischen allgemeiner Theorie und konkreten Anwendungen mit durchgerechneten Beispielen ist nun insgesamt noch ausgewogener. Die Autoren Gerd Fischer war viele Jahre Professor für Mathematik an der Universität Düsseldorf und ist jetzt als Honorarprofessor an der TU München tätig. Er ist Autor zahlreicher erfolgreicher Lehrbücher. Boris Springborn ist Professor für Mathematik an der TU Berlin und wurde dort mit dem Preis für vorbildliche Lehre ausgezeichnet. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 19., vollständig überarbeitete und ergänzte Aufl. 2020, Erscheinungsjahr: 20201015, Produktform: Kartoniert, Titel der Reihe: Grundkurs Mathematik##, Autoren: Fischer, Gerd~Springborn, Boris, Auflage: 20019, Auflage/Ausgabe: 19., vollständig überarbeitete und ergänzte Aufl. 2020, Abbildungen: 62 schwarz-weiße Abbildungen, Bibliographie, Themenüberschrift: MATHEMATICS / Algebra / Linear, Keyword: Abbildungen; Determinanten; Dualität; Eigenwerte; Gleichungssysteme; Grundbegriffe; Tensorprodukte; Vektorräume; euklidisch; unitäre, Fachschema: Algebra~Algebra / Lineare Algebra~Lineare Algebra, Bildungszweck: für die Hochschule, Imprint-Titels: Springer Spektrum, Warengruppe: HC/Mathematik/Arithmetik/Algebra, Fachkategorie: Algebra, Thema: Verstehen, Text Sprache: ger, Seitenanzahl: XII, Seitenanzahl: 422, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Springer-Verlag GmbH, Verlag: Springer-Verlag GmbH, Verlag: Springer-Verlag GmbH, Länge: 203, Breite: 129, Höhe: 27, Gewicht: 457, Produktform: Kartoniert, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger EAN: 9783658039448 9783834809964 9783834804280 9783834800312 9783528032173, eBook EAN: 9783662616451, Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0250, Tendenz: +1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 32.99 € | Versand*: 0 €
  • Lineare Algebra (Nipp, Kaspar~Stoffer, Daniel)
    Lineare Algebra (Nipp, Kaspar~Stoffer, Daniel)

    Lineare Algebra , Eine Einführung für Ingenieure unter besonderer Berücksichtigung numerischer Aspekte , Bücher > Bücher & Zeitschriften , Auflage: 5., durchges. A., Erscheinungsjahr: 200206, Produktform: Kartoniert, Autoren: Nipp, Kaspar~Stoffer, Daniel, Auflage: 02005, Auflage/Ausgabe: 5., durchges. A, Seitenzahl/Blattzahl: 251, Abbildungen: Mit Abb., Fachschema: Algebra / Lineare Algebra~Lineare Algebra, Bildungszweck: für die Hochschule, Warengruppe: HC/Mathematik/Arithmetik/Algebra, Fachkategorie: Algebra, Thema: Verstehen, Text Sprache: ger, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Vdf Hochschulverlag AG, Verlag: Vdf Hochschulverlag AG, Verlag: vdf Hochschulverlag, Länge: 230, Breite: 167, Höhe: 20, Gewicht: 499, Produktform: Kartoniert, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Relevanz: 0006, Tendenz: -1, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 36.00 € | Versand*: 0 €
  • Wann kann man Matrizen multiplizieren?

    Matrizen können multipliziert werden, wenn die Anzahl der Spalten der ersten Matrix mit der Anzahl der Zeilen der zweiten Matrix übereinstimmt. Das Produkt einer Matrixmultiplikation ist eine neue Matrix, deren Elemente durch die Multiplikation von Zeilen der ersten Matrix mit Spalten der zweiten Matrix berechnet werden. Die Reihenfolge der Multiplikation ist wichtig, da die Matrixmultiplikation im Allgemeinen nicht kommutativ ist. Matrizenmultiplikation ist eine grundlegende Operation in der linearen Algebra und wird in vielen Anwendungen wie der Lösung von linearen Gleichungssystemen und der Berechnung von Transformationen verwendet.

  • Wann kann ich Matrizen multiplizieren?

    Du kannst Matrizen multiplizieren, wenn die Anzahl der Spalten der ersten Matrix der Anzahl der Zeilen der zweiten Matrix entspricht. Das Ergebnis wird eine neue Matrix sein, deren Dimensionen sich aus der Anzahl der Zeilen der ersten Matrix und der Anzahl der Spalten der zweiten Matrix ergeben. Die Multiplikation von Matrizen ist nicht kommutativ, das heißt, die Reihenfolge der Matrizen in der Multiplikation ist wichtig. Es ist wichtig, die Regeln der Matrixmultiplikation zu beachten, um sicherzustellen, dass die Operation korrekt durchgeführt wird. In vielen Anwendungen wie der linearen Algebra und der Datenverarbeitung sind Matrixmultiplikationen ein wichtiger Bestandteil von Berechnungen.

  • Welche Matrizen kann man multiplizieren?

    Man kann Matrizen multiplizieren, wenn die Anzahl der Spalten der ersten Matrix mit der Anzahl der Zeilen der zweiten Matrix übereinstimmt. Das Ergebnis der Multiplikation ist eine neue Matrix, deren Dimensionen sich aus der Anzahl der Zeilen der ersten Matrix und der Anzahl der Spalten der zweiten Matrix ergeben. Die Multiplikation von Matrizen ist nicht kommutativ, das bedeutet, dass die Reihenfolge der Multiplikation wichtig ist. Matrizenmultiplikation ist eine wichtige Operation in der linearen Algebra und wird in vielen mathematischen und technischen Anwendungen verwendet.

  • Kann man Vektoren multiplizieren?

    Ja, Vektoren können multipliziert werden, jedoch nicht auf die gleiche Weise wie Skalare. Es gibt zwei Arten von Vektorprodukten: das Skalarprodukt (auch als Punktprodukt bekannt) und das Vektorprodukt (auch als Kreuzprodukt bekannt). Das Skalarprodukt ergibt eine Zahl und misst die Ähnlichkeit zwischen zwei Vektoren, während das Vektorprodukt einen neuen Vektor erzeugt, der senkrecht auf den beiden ursprünglichen Vektoren steht. Beide Vektorprodukte sind in der linearen Algebra von großer Bedeutung und haben verschiedene Anwendungen in der Physik, Ingenieurwissenschaften und anderen Bereichen.

Ähnliche Suchbegriffe für Multiplizieren:


  • Michaels, Thomas C. T.: Prüfungstraining Lineare Algebra
    Michaels, Thomas C. T.: Prüfungstraining Lineare Algebra

    Prüfungstraining Lineare Algebra , Mit über 600 Aufgaben mit ausführlichem Lösungsweg sowie 150 Multiple-Choice Testfragen und 4 Musterprüfungen Dieses Trainingsbuch ist das ideale Begleitbuch für alle Bachelorstudierenden im Fach Mathematik und für die Grundlagenvorlesungen in ingenieur-, natur- und wirtschaftswissenschaftlichen Studiengängen. Es ist speziell geeignet zur Vorbereitung auf Assessmentprüfungen und Basisprüfungen im Themenbereich Lineare Algebra. In Band I werden die folgenden zentralen Themen behandelt: Matrizen, Determinanten Lineare Gleichungssysteme Vektorräume Lineare Abbildungen Eigenwerte und Eigenvektoren Der Stoff wird nicht in der klassischen Lehrbuch-Struktur von Definition, Satz und Beweis präsentiert, sondern kann anhand von mehr als 600 Aufgaben mit unterschiedlichen Schwierigkeitsgraden erlernt und trainiert werden. Alle Übungen werden Schritt für Schritt durchgerechnet, der Lösungsweg wird verständlich erklärt und es werden viele Rechentipps gezeigt. Dabei wird ein breites Spektrum von typischen (Prüfungs-)Aufgabentypen berücksichtigt. Am Ende geben 150 Multiple-Choice Testfragen und 4 konkrete Musterprüfungen, mit ausführlichen Lösungen, dem Leser die Möglichkeit sein Wissen final zu testen und dadurch den Stoff zu festigen. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 37.99 € | Versand*: 0 €
  • Schuldenzucker, Ulrike: Prüfungstraining Analysis und Lineare Algebra
    Schuldenzucker, Ulrike: Prüfungstraining Analysis und Lineare Algebra

    Prüfungstraining Analysis und Lineare Algebra , Alle notwendigen Grundlagen der Analysis und linearen Algebra für Wirtschaftswissenschaftler:innen: Relationen und Abbildungen Potenzrechnung, binomische Formeln Differenzial- und Integralrechnung Funktionen mehrerer Variablen Anwendungen in der BWL und VWL Elastizitäten Nichtlineare Optimierung Lineare Gleichungssysteme Vektorrechnung und Matrizen Lineare Optimierung Gauß- und Simplex-Verfahren Leontief-Systeme, Produktionsmatrizen Didaktisch durchdacht und an den Prüfungsanforderungen ausgerichtet, lassen sich die individuell benötigten Lernbausteine auswählen. Dazu gehören: Repetitorium des prüfungsrelevanten Stoffes Anwendungsaufgaben zu jedem Thema plus Lösungen Musterklausuren inklusive ausführlicher Lösungen Formelsammlung Ideal für die Prüfungsvorbereitung und zur schnellen Wiederholung mathematischer Themen in höheren Semestern. , Bücher > Bücher & Zeitschriften

    Preis: 29.99 € | Versand*: 0 €
  • Modler, Florian: Tutorium Analysis 1 und Lineare Algebra 1
    Modler, Florian: Tutorium Analysis 1 und Lineare Algebra 1

    Tutorium Analysis 1 und Lineare Algebra 1 , Dieses Buch erleichtert euch im ersten Semester des Mathematikstudiums den Einstieg und Umstieg von der Schulmathematik in die Hochschulmathematik. Die Autor*innen machen euch den Einstieg ins Mathestudium so leicht wie möglich: Sie helfen euch dabei, übliche Erstsemester-Fehler zu vermeiden und die Schwierigkeiten zu überstehen, die im ersten Semester ganz normal sind. Schwer verständliche Themen behandeln die Autor*innen besonders ausführlich, auf häufige Fehler weisen sie euch hin. Die essenziellen Inhalte des ersten Semesters werden hier in 21 einzelnen Kapiteln abgedeckt, die jeweils aus zwei sehr verschiedenen Teilen bestehen: Im jeweils ersten Teil findet ihr die mathematisch exakten Definitionen, Sätze und Beweise, die euch auch in euren Vorlesungen begegnen werden. Im jeweils zweiten Teil findet ihr sehr ausführliche und möglichst anschauliche Erklärungen, Hilfen und Beispiele. Bei Fragen und Verständnisproblemen könnt ihr in diesem kommentierten Teil nachschauen. Solltet ihr also irgendeine Definition in der Vorlesung nicht auf Anhieb verstehen, schlagt sie einfach hier nach. Außerdem steht jeweils eine Probeklausur zur Analysis und zur Linearen Algebra zur Verfügung, damit ihr euer erworbenes Wissen testen könnt. Natürlich gibt es dazu auch Musterlösungen. Für die 5. Auflage wurde das Buch nochmals überarbeitet und um gut 230 Flashcards ergänzt, die im Browser oder in der SN-Flashcards-App online abrufbar sind. Mit den Flashcards könnt ihr auch zwischendurch und unterwegs gut weiterlernen und die Inhalte verinnerlichen. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 34.99 € | Versand*: 0 €
  • Mathe für Minecrafter - Multiplizieren, Dividieren, Textaufgaben, 3./4. Klasse
    Mathe für Minecrafter - Multiplizieren, Dividieren, Textaufgaben, 3./4. Klasse

    In diesem Übungsbuch begegnen furchtlose Rätselfans nicht nur gefährlichen Kreaturen, sondern auch kniffligen Matheaufgaben, die sie fit machen für die dritte und vierte Klasse. Es enthält spannende Rätsel und Textaufgaben rund ums Multiplizieren und Dividieren. Für die 3. und 4. Klasse, 96 Seiten, farbige Bilder, kartoniert, 21 x 30 cm

    Preis: 10.95 € | Versand*: 5.95 €
  • Wann kann man Matrizen nicht multiplizieren?

    Matrizen können nicht multipliziert werden, wenn die Anzahl der Spalten der ersten Matrix nicht mit der Anzahl der Zeilen der zweiten Matrix übereinstimmt. Dies ist eine grundlegende Voraussetzung für die Matrixmultiplikation. Wenn diese Bedingung nicht erfüllt ist, ist die Multiplikation nicht definiert und die Matrizen können nicht miteinander multipliziert werden. Es ist wichtig, diese Regel zu beachten, um Fehler bei der Matrixmultiplikation zu vermeiden. Andernfalls kann es zu inkorrekten Ergebnissen führen.

  • Wie können lineare Gleichungssysteme mithilfe von Matrizen und Vektoren gelöst werden? Und welche Rolle spielen lineare Abbildungen in der linearen Algebra?

    Lineare Gleichungssysteme können mithilfe von Matrizen und Vektoren in ein lineares Gleichungssystem umgewandelt werden, das einfacher zu lösen ist. Durch Anwendung von Matrizenoperationen wie Addition, Subtraktion und Multiplikation können die Lösungen des Gleichungssystems gefunden werden. Lineare Abbildungen sind Funktionen, die Vektoren auf andere Vektoren abbilden und spielen eine zentrale Rolle in der linearen Algebra, da sie die Struktur und Eigenschaften von Vektorräumen beschreiben.

  • Wie kann man Matrizen dividieren und multiplizieren?

    Matrizen können multipliziert werden, indem man die Elemente der ersten Matrix mit den entsprechenden Elementen der zweiten Matrix multipliziert und die Produkte dann addiert. Die Anzahl der Spalten der ersten Matrix muss dabei mit der Anzahl der Zeilen der zweiten Matrix übereinstimmen. Matrizen können nicht direkt dividiert werden, da die Division in der linearen Algebra nicht definiert ist. Stattdessen kann man die Multiplikation mit der Inversen einer Matrix verwenden, um eine Division zu simulieren.

  • Wie lautet die Reihenfolge beim Multiplizieren von Matrizen?

    Die Reihenfolge beim Multiplizieren von Matrizen ist wichtig. Man multipliziert zuerst die Zeilen der ersten Matrix mit den Spalten der zweiten Matrix. Das Ergebnis ist eine neue Matrix, deren Dimensionen von den Dimensionen der beiden Ausgangsmatrizen abhängen.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.